
DISCO: AN OBJECT-ORIENTED SYSTEM FOR

MUSIC COMPOSITION AND SOUND DESIGN

Hans G. Kaper,1 Sever Tipei,2 and Je� M. Wright3

1 MCS Division, Argonne National Laboratory, Argonne, IL 60439, USA (kaper@mcs.anl.gov)
2 School of Music, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA (s-tipei@uiuc.edu)

3 University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA (jmwrgh1@uiuc.edu)

Abstract. This paper describes an object-oriented approach to music composition and sound

design. The approach uni�es the processes of music making and instrument building by using

similar logic, objects, and procedures. The composition modules use an abstract represen-

tation of musical data, which can be easily mapped onto di�erent synthesis languages or a

traditionally notated score. An abstract base class is used to derive classes on di�erent time

scales. Objects can be related to act across time scales, as well as across an entire piece, and

relationships between similar objects can replicate traditional music operations or introduce

new ones. The DISCO (Digital Instrument for Soni�cation and Composition) system is an

open-ended work in progress.

1. INTRODUCTION

The compositional process is based on the as-

sumption that aural events can be ordered in time:

a musical composition represents a trajectory in

sound space. The composer controls the structure,

if not the details, of the trajectory and thus the

nature of the composition. The control takes the

form of an algorithm|a set of rules governing the

nature of the objects, their evolution, and their

interrelations|which de�nes the musical compo-

sition. Composing thus means de�ning objects

and relating those attributes that yield a desired

trajectory in sound space.

The object-oriented paradigm and the soft-

ware implementation we describe here reect this

point of view. They also provide a way of merg-

ing two activities which, traditionally, have been

considered separate: writing music and build-

ing instruments. With the exception of Harry

Partch [Partch, 1960], who built actual instru-

ments responsive to his music's structure (based

on ratios), and Xenakis [Xenakis, 1993], who used

stochastic distributions to generate the structure

of computer-generated sounds as well as large

scale textures, few composers have shown an in-

terest in combining these two areas. The system

presented here treats both activities in a uniform

way by using similar logic, objects, and proce-

dures. The software modules for music compo-

sition and sound design are consistently and com-

prehensively interconnected. The resulting code,

currently referred to as DISCO (Digital Instru-

ment for Soni�cation and Composition), is a work

in progress. The system was used recently by one

of the authors for the composition of a piece for

violin and computer-generated tape [Tipei, 2000].

2. OBJECTS AND PROPERTIES

The composition modules use an abstract rep-

resentation of musical data, which can easily be

mapped onto di�erent synthesis languages or, as

the case may be, a traditionally notated score.

This is achieved by de�ning \Instrument" and

\Property" classes in response to the requirements

of the target output.

The Instrument class is essentially a collec-

tion of properties that de�ne all of an instrument's

control parameters. A very simple instrument

might be de�ned by the properties \Start Time,"

\Duration" and \Pitch." Each property is stored



in a table, which is indexed by a string identi-

�er. The Instrument class includes the methods

describing the manner in which the instrument's

output is to be generated. Note that the Instru-

ment class does not necessarily correspond to any

actual instrument, but serves rather as an abstrac-

tion for de�ning the properties of a given sound

object.

The Property class enables us to easily clas-

sify the di�erent properties of a sound object.

A composition would likely contain a number of

sound objects sharing certain properties, such as

\Start Time." In this case, the advantages of the

polymorphic nature of the system become evident,

as one can work with these properties without

knowing the type of instrument. The Property

class also incorporates methods to check for the

correct type of input data. For example, many in-

struments share the property \Pitch," which may

be represented as a oating-point frequency value,

as an integer that indexes a tuning table, or as a

string spelling the name of a note.

3. TIME SCALES

The perception of aural events and their orga-

nization in larger structures points to the exis-

tence of time scales associated with particular ob-

jects. We mention, in order of increasing mag-

nitude, the time scales of audio frequencies and

of frequency and amplitude modulations, which

a�ect partials and sounds; the time scales asso-

ciated with melodic phrases, chordal aggregates

and more complex textures; the time scales of

larger formal units, such as sections and move-

ments; and the time scale associated with an en-

tire piece [Kaper, 1999a].

An abstract base class, \Event," is used to

derive classes on di�erent time scales. The Event

class has a relatively simple structure, which is de-

�ned by three attributes: start time, duration and

name. Subclasses are derived from it in response

to particular needs.

An event may contain other events and thus

become a \Compound Event." An entire piece is

the most inclusive compound event. At the other

extreme are the \Atomic Events," which do not

include other events. Partials in a sound or the

graphic symbol of a note in a printed score are ex-

amples of atomic events. \Sections," \Phrases,"

\Motives," \Chords" and \Aggreggates" are com-

pound events which contain events of shorter or

equal duration and may be themselves part of

larger structures|of other compound events.

Besides the three inherited attributes (start

time, duration and name), the derived classes have

the property that they can be related to other sim-

ilar classes or to classes of �ner or coarser gran-

ularity. The type of a class, as well as its poten-

tial relations to other classes, are reected in the

class's name.

Relationships or associations can act across

time scales. An example is the congregation of

partials into sounds, of sounds into chords or

melodic gestures, and of sections into a compo-

sition. Also, more sophisticated relationships can

be established between objects at di�erent time

scales and/or di�erent locations in the piece. For

example, the presence of a sound with a particular

spectral envelope may trigger the assignment of a

speci�c chord in a remote section of the piece.

Relationships between similar objects can

replicate traditional music operations, such as

transposition, inversion, and retrograde of a group

of sounds, augmentation/diminution of durations

or pitch intervals, chord inversion or other rear-

rangements of sounds in a chord, etc.

4. HIGHER LEVEL OF ABSTRACTION

\Generator" classes provide the composer with

the ability to generate events based on some spe-

ci�c algorithm. They are designed to serve across

time scales and can be of a generalized or speci�c

type. For example, a simple random generator

can create \NumberProperty" objects, which can

be assigned any property of an instrument or event

that is derived from the NumberProperty class. A

speci�c generator to create only events of a certain

type can be obtained by combining several simple

generators into an \Event Generator." One such

utility, already in place, is designed to select the

number of partials within a sound, the number of

sounds in a cluster, or the number of sections in a

piece according to a selected probability distribu-

tion. Another utility, the \Envelope" class, also

in place, reads an envelope and interpolates values

as necessary, thus giving the user control over the



shape of events on various time scales. Still other

classes enable the user to assign values manually

from a list of possibilities or by using a script.

We intend to design a number of common

algorithmic composition techniques as Generator

classes to implement customized algorithmic tech-

niques of the composer's design. These classes will

be extendible and can be used by themselves, as

well as in combination.

5. METHODS AND APPLICATIONS

The type of classes and the methods to relate

them are determined by the type of music the

user wishes to compose. Objects like \Melody,"

\Chord" and \Rhythm," and methods such as

\Canon" and \Chorale" anticipate a traditional

composition; \Markov," \Stochastic" and \Het-

erophony" show a di�erent bend. While the ini-

tial emphasis was on less-than-traditional modes

of composing, the system has acquired a much

wider scope and now supports traditional, as well

as nontraditional thinking. In addition, it sup-

ports sound design for scienti�c soni�cation|

the faithful rendition of complex data sets in

sounds [Kaper, 1999b]. The DISCO system is

a truly open-ended work in progress, which is

continuously being enriched with new classes and

methods.

Among the �rst utilities developed for the

DISCO system was the \Matrix" class. It was de-

signed to enable the choice of a start time and a

duration for each section in a Manifold Composi-

tion according to certain probability distributions.

A Manifold Composition is essentially a collection

of variants of one and the same piece, di�ering in

details but with a similar overall structure [Tipei,

1989]. The di�erences between the variants are

the result of stochastic choices. We briey explain

how the Matrix class was used to construct the

probability matrices for the choice of start times

and durations.

Suppose there are n + 1 time marks in the

piece (including the start time and end time). The

start time of each section is supposed to coincide

with one of the time marks. The end time of the

piece cannot be the start time of a section, so

there are n possible start times; we label them

t1 through tn. Each time mark tj has a certain

weight qj associated with it, which measures the

likelihood of the time mark becoming the start

time of a section. Suppose there are m possible

sections, labeled s1 through sm. Each section si

has a certain (relative) weight wi associated with

it; furthermore, si has a certain probability pij to

become active at the time mark tj . Using the Ma-

trix class, a probability matrix P is constructed

with m rows and n columns. The elements of P

are

Pij =

P
i

k=1

P
j

l=1
wkpklql

P
m

k=1

P
n

l=1
wkpklql

;
i = 1; : : : ; m;

j = 1; : : : ; n:

Then Pij is the probability that section si will

start at the time mark tj . Once the start times

have been chosen, the duration di of each sec-

tion si is determined from a probability matrix

Q, which is constructed in a similar manner.

The matrices P and Q are dynamically ad-

justed. Once a start time and a duration have

been assigned to a particular section, adjustments

are made to diminish the probability that any

other section is selected during the same time in-

terval or at nearby times.

The Matrix class enables the assignment of

events in any order, not necessarily as they ap-

pear in the piece|a reection of the way most

human composers work. The class has the poten-

tial of correlating various rationales leading to a

particular selection, and its methods can be used

in connection with any parameter values and in-

tervals of any event. Not only sections in a piece

can be de�ned this way, but also sounds in a sec-

tion, chords and motives in a section, etc. A logi-

cal step will be to combine the matrices for the

selection of start times and durations into one

three-dimensional matrix and, eventually, to in-

clude all parameters in a single multidimensional

matrix. Any one choice will then be the result of a

combination of all available criteria and will deter-

mine all aspects of an event. Finding the appro-

priate data representation for such a multidimen-

sional matrix, however, is not trivial|especially

in C++.

6. INTERFACES

All the basic classes described here have been

implemented in C++. However, even for ex-

perienced programmers, C++ is a di�cult lan-



guage, and although some composers are excel-

lent programmers, we cannot assume that all com-

posers are willing to spend the time and e�ort

to become pro�cient in C++. For this reason,

most C++ classes have an analagous interface in

Python, an interpreted high-level object-oriented

language that is considerably easier to learn than

C++ [Lutz, 1996; Beazley, 1999]. The choice of

language is left to the user.

The wrapper code that allows the C++

classes to be used as Python classes is gener-

ated by SWIG [Beazley, 1996], which automates

the process of combining C and C++ code with

higher-level languages such as Python, Perl and

Tcl. Although Python is currently the only lan-

guage supported by the system, it is relatively

simple to generate wrappers for Perl and Tcl.

7. CONCLUSION

In this paper we have described an object-oriented

system for music composition and sound design.

The object-oriented approach has the advantage

that one can easily add di�erent classes and/or

methods taylored to a particular composition or

aesthetic. The code is like an open-ended work

in progress, which invites the creation of struc-

tures and relationships between sounds not yet

employed.

ACKNOWLEDGMENTS

This work was supported by the Mathematical,

Information, and Computational Sciences Division

subprogram of the O�ce of Advanced Scienti�c Com-

puting Research, U.S. Department of Energy, under

Contract W-31-109-Eng-38.

REFERENCES

Partch, H. 1960. Genesis of a Music; An Account of

a Creative Work, Its Roots and Its Ful�llments, New

York, Da Capo Press, Second Edition (1974).

Xenakis, I. 1992. Formalized Music, Thought and

Mathematics in Music, Revised Edition, Pendragon

Press, pp. 289{293.

Tipei, S. 2000. \AntiPhan" for Violin and Computer-

Generated Tape (unpublished).

Kaper, H. G. and Tipei, S. 1999a. \Formalizing the

Concept of Sound," Proc. Int'l. Computer Music Con-

ference, Beijing, China, pp. 387{390.

Kaper, H. G., Tipei, S., and Wiebel, E. 1999b. \Data

Soni�cation and Sound Visualization," Computing in

Science and Engineering, Vol. 1, No. 4, pp. 48{58.

Tipei, S. 1989. \Manifold Compositions: A

(Super)Computer-Assisted Composition Experiment

in Progress," Proc. Int'l. Computer Music Conference,

Columbus, Ohio, pp. 324{327.

Lutz, M. 1996. Programming Python, O'Reilly & As-

sociates.

Beazley, D. 1999. Python Essential Reference, New

Riders.

Beazley, D. 1996. \SWIG: An Easy to Use Tool for In-

tegrating Scripting Languages with C and C++," Pre-

sented at the 4th Annual Tcl/Tk Workshop, Monterey,

Cal. (http://www.swig.org/papers/Tcl96/tcl96.html)


